Tripp Lite BP480V500 External Battery Pack for Select 3-Phase UPS Systems

Owner's Manual - Page 8

For BP480V500. Also, The document are for others Tripp Lite models: BP192V787C-1PH, BP480V200, BP240V, BP480V300, BP480V400

PDF File Manual, 80 pages, Read Online | Download pdf file

BP480V500 photo
Loading ...
Loading ...
Loading ...
8
3. Battery Cabinet Installation
3.7 Electrical Connection
DANGER! LETHAL HIGH VOLTAGE HAZARD!
All wiring should be performed by a qualified electrician, in accordance with the warnings in this manual and all
applicable electrical and safety codes. Incorrect wiring may cause serious personal injury and property damage.
The battery cabinet is to be connected to the load through a DC circuit breaker. This allows the battery to be disconnected from the load
and charger for maintenance and/or repair.
The DC molded case circuit breakers are UL-listed for branch circuit protection. If replacement is required, UL-listed components with the
same voltage and current rating must be used.
The size of the load connection cables must consider maximum allowable voltage drop as well as the cables’ continuous ampere capacity
and anticipated ampere discharge rate of the individual battery cabinet. A maximum voltage drop of 1.5 VDC in the load connection
cables is recommended. Refer to the UPS unit’s Owner’s Manual for recommended wire sizes.
Refer to all applicable local, state and national codes (including NEC) for appropriate cable size and ratings.
External circuit protection devices (fuses or circuit breakers) must consider the discharge rate of the battery, the wiring to be protected and
the DC short circuit current of the battery.
If the battery cabinet includes an integrated battery charger (single-phase and “C” models only), the charger input must be connected to
an AC supply circuit separate from the UPS system.
1. Open the front door of the battery cabinet to access internal components. Use a digital voltmeter when voltage measurements are
required.
2. Determine if the battery has been inadvertently grounded by resetting the circuit breaker to the “on” position and measuring the voltage
between the battery cabinet grounding lug and the positive load connection point within the cabinet. This voltage should measure
0 (zero) VDC. If the measured voltage is not zero, determine the cause and correct before proceeding.
3. Return the internal circuit breaker in an open “off” position as a safety precaution while connecting the output cables to prevent damage
if the cables are accidentally shorted.
4. The top and sides of the battery cabinet include knockouts for load connection cable entry. Punch out the appropriate knockout and
connect the conduit or cable bushing.
5. The output circuit breaker will accommodate cables up to 350 MCM (350 kcmil).
6. Connect an appropriate equipment grounding cable to the grounding lug mounted in the top of the battery cabinet.
7. Feed the positive and negative cables (and “N” center, if equipped) from the open external disconnect switch or the UPS battery field
wiring terminals through the conduit/cable bushing and connect to the respective output terminals inside the battery cabinet.
3.8 Battery Charger Electrical Connection (Select Models)
1. Select battery cabinets (single-phase and “C” models only) include an integrated battery charger. The charger includes fusing for
120 VAC input. Refer to Sections 6.2 and 6.3 for a terminal block diagram and additional battery charger information.
2. Set the battery cabinet input voltage to 120 VAC by jumpering these terminals: 2 and 3, 3 and 4, 5 and 6.
3. Connect charger terminals 7 and 8 to a 30-amp, 120 VAC, 60 Hz power source. Warning: Do not connect the battery charger to the
UPS system output. The battery charger requires a separate AC supply circuit.
3.9 Final Electrical Check
Before closing any connecting circuit breaker or disconnect switch, complete these verification steps:
1. Verify that the battery cabinet output voltage is correct.
2. If battery cabinets will be operated in parallel, verify that the individual system output voltages match within 2 VDC.
3. Verify that the voltage measured between either output terminal and the battery cabinet ground is zero.
4. If any of the above verification steps shows an irregularity, determine and correct the cause before proceeding.
5. Reset the circuit breaker to the “on” position.
Loading ...
Loading ...
Loading ...